© Borgis - Postepy Fitoterapii 2, s. 96-114
*Tadeusz Wolski, Agnieszka Ludwiczuk, Tomasz Baj, Kazimierz Głowniak, Łukasz Świątek
Rodzaj Panax – systematyka, skład chemiczny, działanie i zastosowanie oraz analiza fitochemiczna nadziemnych i podziemnych organów żeń-szenia amerykańskiego – Panax quinquefolium L. Cz. I.
Genus panax – taxonomy, chemical composition, pharmacological effects, medicinal application and phytochemical analysis of aerial and underground parts of american ginseng – panax quinquefolium l. part i.
Katedra i Zakład Farmakognozji z Pracownią Roślin Leczniczych, Uniwersytet Medyczny w Lublinie
Kierownik Katedry i Zakładu: prof. dr hab. Kazimierz Głowniak
Summary
In this article general information concerning ginseng and its taxonomy are presented. Further, the historical use and botanical description is given. The basic biologically active compounds, with special attention to ginsenosides and their biosynthesis are described. Important part of this article is the description of pharmacological effects and multidirectional application of ginseng.
Ginseng is a well known to human plant, that have been used for medicinal purposes for thousands of years. Despite the times when the ginseng root had the price of gold belong to past, it is still a very valued medicinal substance. The exploitation of natural habitats of ginseng coerced the trials of cultivation of this plant. At present almost all ginseng root available on market is derived from agriculture crops. For the last few years, also in Lublin, research on american ginseng (Panax qiunquefolium L.) were being conducted. Ginseng cultivation is expensive and time-consuming because it requires special soil and climatic conditions. Cultivated ginseng grows faster than naturally but delivers, in most cases, inferior medicinal substance. That is why optimization of extraction processes on industrial scale in the direction of higher effectiveness and recovery along with maintaining low costs and time-consumption of those processes is crucial.
Main bioactive compounds responsible for pharmacological properties of ginseng are called ginsenosides. From literature data it can be concluded, that the bets therapeutic results can be obtained when extract containing various ginsenosides is used. Research indicate that different ginsenosides express often not only different but also antagonistic pharmacological effects. What is more, sometimes the different doses can induce antagonistic effects; ex. ginsenoside Rg1 in small doses stimulates the CNS (Central Nervous System), while larger doses have inhibitory effect. That is why both, qualitative and quantitative analysis of ginenosides present in ginseng extracts is crucial for assuring their therapeutic effectiveness. That analysis can be performed thanks to modern and effective analytical techniques.
Key words: panax, panax quinquefolium, american ginseng, ginsenosides, pharmacological effects, medicinal application
Piśmiennictwo
1. Grochowski B. Żeń-szeń właściwy – cudowny wszechlek. Wiad Ziel 1990, 32 (9): 17-8. 2. Berbeć S, Dziedzic M. Uprawa żeń-szenia amerykańskiego. Wyd. AR w Lublinie, Lublin, 1996, pp. 60. 3. Stelmach W. Żeń-szeń właściwy Panax ginseng C.A. Meyer. Wiad Ziel 1998, 40 (2): 13-5. 4. Nguyen TN. Study on Panax vietnamensis Ha et Grushv. – Araliaceae. Botany – tissue culture. Chemistry – biological properties. Herba Pol 1989, 35, Supl. II. pp. 229. 5. Kołodziej B. Studia nad wzrostem, rozwojem oraz uprawą żeń-szenia amerykańskiego ( Panax quinquefolium L.). Rozprawa habilitacyjna.Wyd. AR w Lublinie, Lublin, 2003; pp. 103. 6. Lyons CN. Anatomy and classification of American ginseng. 2003 http://www.agf.gov.bc.ca/speccrop/ginseng/prodgiude/02_anatomy.pdf 7. Internet_1. http://plants.usda.gov/cgi_bin/plant_profile.cgi?symbol=PAQU 8. Ginsana(r), G 115 Vitalisierenden Energiespender in jedem Lebensalter; GPL Ginseng Products Ltd., Lugano, Schweiz, 1981; 13-8. 9. Czikow P, Łaptiew J. Rośliny lecznicze i bogate w witaminy.Państwowe Wydawnictwo Rolnicze i Leśne. Warszawa, 1988; p. 377-81. 10. Lutomski J. Panax vietnamensis Ha et Grushv. – nowy gatunek z rodzaju Panax. Herba Pol 1992; 38 (4): 203-11. 11. Goldstein B. Ginseng: its history, dispersion, and folk tradition. American J Chin Med 1975; 3 (3): 223-34. 12. Kozłowski J. Czy w Polsce można i warto uprawiać żeń-szeń. Wiad Ziel 1993; 35 (11): 18-9. 13. Schluter C., Punja Z.K., Floral biology and seed production in cultivated North American ginseng ( Panax quinquefolius). J Amer Soc Hort Sci 2000; 125 (5): 567-75. 14. Pięta D, Berbeć S. Grzyby porażające żeń-szeń ( Panax quinquefolium L.) Mat. Ogólnopolskiej Konferencji Naukowej „ Nauka Praktyce Ogrodniczej ”, Akademia Rolnicza, Lublin, 1995; p. 345-8. 15. Pięta D, Berbeć S. Choroby żeń-szenia amerykańskiego ( Panax quinquefolium L.) powodowane przez grzyby. Annales UMCS sec. EEE 1997; 5: 219-25. 16. Pięta D. Badanie aktywności grzybobójczej fungicydów w stosunku do grzybów chorobotwórczych dla żeń-szenia amerykańskiego ( Panax quinquefolium L.) Annales UMCS sec. EEE 1997; 5: 211-7. 17. Kołodziej B. The effect of soil disinfections with selected chemicals on the growth and development of American ginseng ( Panax quinquefolium L.). Folia Horticulturae 2002; 14 (2): 177-82. 18. Davis JM. Ginseng. A production guidefir North Carolina. Cooperation Extension Service 2/97-3M-JMG-270069, 1997; p. 1-11. 19. Ginseng production guide for commercial growers, Publ. by TAGG of British Columbia and Ministry of Agriculture, Fisheries and Food, 1998; p. 1-224. 20. Kołodziej B, Berbeć S. Badania nad uprawą żeń-szenia amerykańskiego ( Panax quinquefolium L.) [w:] Berbeć S., Dziemba Sz., Wybrane problemy produkcji roślinnej na Lubelszczyźnie. WAR, Lublin, 2004. p. 62-67. 21. Ludwiczuk A. Badania składu chemicznego w ontogenezie żeń-szenia amerykańskiego ( Panax quinquefolium L.). Rozprawa doktorska, AM Lublin, 2005. 22. Chen SE, Staba EJ, Tahiyasu S i wsp. Further study on dammarane saponins of leaves and stems of American ginseng, Panax quinquefolium. Planta Med 1981; 42: 406-9. 23. Cui JF. Identification and quantification of ginsenosides in various commercial ginseng preparations. European J Pharm Sci 1995; 3: 77-85. 24. Dong K, Chang Y, Zedk U i wsp. Dammarane saponins from Panax quinquefolium. Phytochem 1995; 40 (5): 1493-97. 25. Yoshikawa M, Murakami T, Yashiro K i wsp., Bioactive saponins and glycosides. XI. Structures of new dammarane-type triterpene oligoglycosides, quinquenosides I, II, III, IV, and V, from American ginseng, the roots of Panax quinquefolium L. Chem Pharm Bull 1998; 46 (4): 647-54. 26. Wang J, Sha Y, Li W i wsp. Quinquenoside L9 from leaves and stems of Panax quinquefolium L. J Asian Nat Prod Res 2001; 3(4): 293-7. 27. Kondo N, Shoji J. Studies on the constituents of Panaxis japonici rhizoma. I. – Isolation and purification of the saponin. Yakugaku Zasshi 1969; 88: 325-8. 28. Morita T, Tanaka O, Kohda H. Saponin composition of rhizomes of Panax japonicus collected in South Kyushu, Japan, and its significance in oriental traditional medicine. Chem Pharm Bull 1985; 33 (9): 3852-8. 29. Yang TR, Kasai R, Zhou J i wsp. Dammarane saponins of leaves and seeds of Panax notoginseng. Phytochem 1983; 22, 1473-8. 30. Li D. Identification of Panax notoginseng in complex Danshin tablets by thin-layer chromatography. J Chinese Trad Patent Med 2000; 22 (10): 736-7. 31. Yang TR, Jiang ZD, Wu MZ i wsp. Studies on saponins of rhizomes of Panax zingiberensis Wu et Feng. Acta Pharm Sinica 1984; 19 (3): 232-6. 32. Li W, Fitzloff JF. Determination of 24(R)-pseudoginsenoside F11 in North American ginseng using high performance liquid chromatography with evaporative light scattering detection. J Pharm Biomed Anal 2001; 25: 257-65. 33. Li Z, Xu NJ, Wu CF i wsp. Pseudoginsenoside-F11 attenuates morphine-induced signaling in Chinese hamster ovary-mu cells. Neuroreport 2001; 12 (7): 1453-6. 34. Puigjaner JM. Red Ginseng. Monografiá Cientifica. Korhispana S.A., Barcelona, 1996; pp. 146. 35. Haijiang Z, Yongjiang W, Yiyu C. Analysis of ´SHENMAI´ injection by HPLC/MS/MS. J Pharm Biomed Anal 2003; 31: 175-83. 36. Kohlmünzer S. Farmakognozja. PZWL, Warszawa, 1998; pp. 670. 37. Kopcewicz J, Lewak S. Fizjologia roślin. PWN, Warszawa, 2002; 361-86. 38. Haralampidis K, Trojanowska M, Osbourn AE. Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng/Biotechnology 2002; 75: 31-49. 39. Kaku T, Kawashima Y. Isolation and characterization of ginsenoside-Rg2, 20R-Prosapogenin, 20S-Prosapogenin and γ20-Prosapogenin. Chemical studies on saponins of Panax ginseng C.A. Meyer, third report. Arzneim Forsch 1980; 30 (6): 936-43. 40. Nagasawa T, Choi JH, Nishino Y i wsp. Application of high-performance liquid chromatography to the isolation of ginsenoside-Rf, -Rg2, and Rh1 from a crude saponin mixture of ginseng. Chem Pharm Bull 1980; 28 (12): 3701-7. 41. Nagasawa T, Yokozawa T, Nishino Y i wsp. Application of high-performance liquid chromatography to the isolation of ginsenoside-Rb1, -Rb2, -Rc, -Rd, and Rg1 from ginseng saponins. Chem Pharm Bull 1980; 28 (7): 2059-64. 42. Kitagawa I, Taniyama T, Hayashi T i wsp. Malonyl-ginsenosides Rb1, Rb2, Rc and Rd, four new malonylated dammarane-type triterpene oligosaccharides from ginseng radix. Chem Pharm Bull 1983; 31, 3353-6. 43. Zhou Z, Zhang G. Analysis of ginseng. IV. HPLC determination of ginsenosides in Panax ginseng. Youxue-Xuebao 1988; 23 (2): 137-41. 44. Peishon X, Yuzhen Y. Application of HPTLC fingerprint analysis to stability evaluation of ginsenosides in Ginseng preparation. J Planar Chromatogr 1988; 1: 258-60. 45. Liu J, Song A. Studies of industrial extraction technology on total saponins in aerial part of Asian ginseng. Zhongguo Yaoxue Zazhi 1992; 27: 291-3. 46. Kim DS, Chang YJ, Zedk V i wsp. Dammarane saponins from Panax ginseng. Phytochem 1995; 40 (5): 1493-7. 47. Dou D, Wen Y, Pei Y i wsp. Ginsenoside-Ia: A novel minor saponin from the leaves of Panax ginseng. Planta Med 1996; 62: 179-81. 48. Xuan Z, Leming L, Jun Z. A preliminary study of the quantitative structure-retention relationship of ginsenosides in normal-phase thin-layer chromatography. Chinese J Chromatogr 2000; 18 (3): 206-11. 49. Vanhaelen-Fastre RJ, Faes ML, Vanhaelen MH. High-performance thin-layer chromatographic determination of six major ginsenosides in Panax ginseng. J Chromatogr A 2000; 868: 269-76. 50. Kwon SW, Han SB, Park IH i wsp. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 2001; 921: 335-9. 51. Zhang C, Yu H, Bao Y i wsp. Purification and characterization of ginsenoside-α-arabinofuranase hydrolyzing ginsenoside Rc into Rd from the fresh root of Panax ginseng. Process Biochemistry 2002; 37: 793-8. 52. Ando T, Tanaka O, Shibata S. Chemical studies on the oriental plant drugs. XXV. Comparative studies on the saponins and sapogenins of ginseng and related crude drugs. Svoyakugaku Zasshi 1971; 25: 28-32. 53. Besso H, Kasai R, Wie J i wsp. Futher studies on Dammarane-Saponins of American ginseng, roots of Panax quinquefolium L. Chem Pharm Bull 1982; 30 (12): 4534-8. 54. Yamaguchi H, Kasai R, Matsuura H i wsp. (1988), High-performance liquid chromatographic analysis of acidic saponins of ginseng and related plants. Chem Pharm Bull 1988; 36: 3468-73. 55. Ko SR, Choi KJ, Kim SC i wsp. (1995), Content and composition of saponin compounds of Panax species. Korean J Ginseng Sci 1995; 19: 254-9. 56. William AC, John GH, Jama E. Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr A 1996; 755: 11-7. 57. Ren G, Chen F. Simultaneous quantification of ginsenosides in American ginseng ( Panax quinquefolium) root powder by visible/near-infrared reflectance spectroscopy. J Agric Food Chem 1999; 47 (7): 2771-5. 58. Court WA, Hendel JG, Elmi J. Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr A 1996; 775: 11-7. 59. Song CC, Ma ZY, Xu JD. Structure modification of ginsenosides: investigation of production of ginsenoside Rh1 and Rh2. Chin Pharm J 1992; 27: 6-7. 60. Wang J, Li W, Li X. A new saponin from the leaves and stems of Panax quinquefolium L. collected in Canada. J Asian Nat Prod Res 1998; 1 (2): 93-7. 61. Wang HC, Chen CR, Chang CJ. Carbon dioxide extraction of ginseng root hair oil and ginsenosides. Food Chemistry 2001; 72: 505-9. 62. Liu JHC, Staba EJ. The ginsenosides of various ginseng plants and selected products. J Nat Prod 1980; 43 (3): 340-6. 63. Peigen X. General status on ginseng research in China. Herba Pol 1989; 35 (1): 69-72. 64. Sticher O. Getting to the root of ginseng. CHEMTECH 1998; 28 (4): 26-32. 65. Ma X, Lu R, Song J i wsp. Effects of concentration and ratio of N, P and K on seedlings of Panax quinquefolium L. Zhongguo Zhong Yao Za Zhi 1990; 15 (2): 78-81. 66. Kochan E, Chmiel A. Biosynteza ginsenozydów w kulturach in vitro Panax quinquefolium. Mat. XIX Naukowego Zjazdu Polskiego Towarzystwa Farmaceutycznego. Wrocław 22-24 wrzesień 2004, tom I: 88-9. 67. Du XW, Wills RBH, Stuart DL. Changes in neutral and malonyl ginsenosides in American ginseng ( Panax quinquefolium) during drying, storage and ethanolic extraction. Food Chemistry 2004; 86: 155-9. 68. Yat PN, Arnason JT, Lu ZZ i wsp. Ginsenoside methodology. HPLC methods for separation and quantitative determination of ginsenosides used in the American Botanical Council´s Ginseng Evaluation Program. 2002 http://www.herbalgram.org/defauit.asp?c=ginsenoside 69. Tani T, Kubo M, Katsuki T i wsp. Histochemistry. II. Ginsenosides in ginseng ( Panax ginseng, root). J Nat Prod 1981; 44 (4): 401-7. 70. Corthout J, Naessens T, Apers S i wsp. Quantitative determination of ginsenosides from Panax ginseng roots and ginseng preparations by thin layer chromatography-densitometry. J Pharm Biomed Anal 1999; 21: 187-92. 71. Kubo M, Tani T, Katsuki T i wsp. (1980), Histochemistry. I. Ginsenosides in ginseng ( Panax ginseng C.A. Meyer). J Nat Prod 1980; 43 (2): 278-84. 72. Farmakopea Europejska, European Pharmacopoeia – Supl. (2001), 887-9. 73. Tang J, Lu J. Application of HPLC/ELSD on quantitative determination of pseudoginsenoside-F11 in radix Panax quinquefolium. Chin J Pharm Anal 1999; 19: 241-7. 74. Li W, Gu C, Zhang H i wsp. Use of high-performance liquid chromatography tandem mass spectrometry to distinguish Panax ginseng C.A. Meyer (Asian ginseng) and Panax quinquefolium L. (North American ginseng). Anal Chem 2000; 72 (21): 5417-22. 75. Chan TW, But PP, Cheng SW i wsp. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Anal Chem 2000; 72 (6): 1281-7. 76. Kączkowski J. Biochemia roślin, tom 1. Przemiany typowe. PWN, Warszawa, 1992; pp. 452. 77. Kączkowski J. Biochemia roślin, tom 2. Metabolizm wtórny. PWN, Warszawa, 1993; pp. 368. 78. Fujimoto Y, Wang H, Kirisawa M i wsp. Acetylenes from Panax quinquefolium. Phytochemistry 1992; 31 (10): 3499-501. 79. Fujimoto Y, Wang H, Satoh M i wsp. Polyacetylenes from Panax quinquefolium. Phytochemistry 1994; 35 (5): 1255-7. 80. Wang HX, Ng TB. Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochem Biophys Res Commun 2000; 269: 203-208. 81. Fujimoto Y. Acetylenes from callus of Panax ginseng. Phytochemistry 1987; 26 (10): 2850-2. 82. Lutomski J, Luan TC. Polyacetylenes in rhizomes and roots of Vietnamense ginseng ( Panax vietnamensis Ha et Grushv.). Herba Pol 1989; 35 (4), 207-11. 83. Kometsu M. Studies of the constituents of the herb P. ginseng. II. On the flavonoid compounds. Yakugaku Zasshi 1969; 89 (1): 122-6. 84. Lee TM, Der Marderosian AH. Studies on the constituents of dwarf ginseng. Phytother Res 1988; 2 (4): 165-9. 85. Han BH, Park MH, Han YN. Studies on the antioxidant components of Korean ginseng. III. Identification of phenolic acids. Arch Pharmacol Res 1981; 4 (1): 53-8. 86. Wee JJ, Park JD, Kim MW i wsp. Identification of phenolic antioxidant components isolated from Panax ginseng. J Korean Agric Chem Soc 1989; 32 (1): 50-6. 87. Wee JJ, Park JD, Kim MW i wsp. Isolation of phenolic antioxidant components from Panax ginseng. J Korean Agric Chem Soc 1989; 32 (1): 44-9. 88. Park MK, Park JH, Kim KH i wsp. (1994), Analysis of aromatic acids in Panax ginseng by gas chromatography. Yakhak Hoeji 1994; 38 (4): 389-93. 89. Wee JJ, Hoe JN, Kim MW. Analysis of phenolic components in Korean red ginseng by GC/MS. Korean Journal of Ginseng Science 1996; 20 (3): 284-90. 90. Jung MY, Jeon BS, Bock JY. Free, estrified, and insoluble-bound phenolic acids in white and red Korean ginseng ( Panax ginseng C.A. Meyer). Food Chemistry 2002; 79, 105-11. 91. Wee JJ, Ji YS, Kim SK i wsp. Comparison of phenolic components between Korean and American ginseng by thin layer chromatography. J Ginseng Res 1998; 22: 91-5. 92. Beveridge TH, Li TS, Drover JC. Phytosterol content in American ginseng seed oil. J Agric Food Chem 2002; 50 (4): 744-50. 93. Ling WH, Jines PJH. Dietary phytosterols: A review of metabolism, benefits and side effects. Life Sci 1995; 57: 195-206. 94. Jones PJH, MacDougall DE, Ntanios F i wsp. Dietary phytosterols as cholesterol-lowering agents in humans. Can J Physiol Pharmacol 1999; 75: 217-27. 95. Kobayashi Y, Sugaya Y, Tokue A. Clinical effects of β-sitosterol (phytosterol) on benign prostatic hyperplasia: preliminary study. Hinyokika Kiyo 1998; 44: 865-8. 96. Akihisa T, Yasukawa K, Yamaura M i wsp. Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J Agric Food Chem 2000; 48 (6): 2313-9. 97. Zheng YL, Zhang CX, Li XG i wsp. Comparison between Chinese Panax quinquefolius and imported Panax quinquefolium: Analysis of composition of essential oil in Panax quinquefolius. Acta Pharm Sinica 1989; 24: 118-21. 98. Dongyan H, Weihua Z, Ruihua H. Separation and determination of chemical constituents in the volatile oil of three traditional Chinese crude drugs. J Pharm Biomed Anal 1998; 17: 1423-6. 99. Kim SK, Sakamoto I, Morimoto K i wsp. Seasonal variation of saponins, sucrose and monosaccharides in cultivated ginseng roots. Planta Med 1981; 42: 181-6. 100. Duke JA. Handbook of medicinal herbs. CRC Press, Boca Raton, Florida, 1987; p. 337-41. 101. Duke JA. Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca Raton, Florida, 1992; p. 426-8. 102. Konno C. Isolation and hypoglycemic activity of panaxans A, B, C, D and E, glycans of P. ginseng root. Planta Med 1984; 50 (5): 434-5. 103. Oshima Y, Sato K, Hikino H. Isolation and hypoglycemic activity of quinquefolans A, B, and C, glycans of Panax quinquefolium roots. J Nat Prod 1987; 50 (2): 188-90. 104. Kuo YH, Ikegami F, Lambein F. Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry 2003; 62: 1087-91. 105. Ng TB, Wang HX. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Science 2001; 68: 739-49. 106. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and miltiple actions. Biochem Pharmacol 1999; 58 (11): 685-93. 107. Lutomski J. Adaptogenne właściwości żeń-szenia. Farm Pol 1999; 55 (6): 293-300. 108. Wichtl M. Herbal Drugs and Phytopharmaceuticals. Medpharm, Scientific publishers CRC Press, Baca Raton, Ann Arbor, London, Tokyo, Stuttgart, 1994; p. 236-8. 109. Shibata S, Tanaka O, Shojii J i wsp. Chemistry and pharmacology of Panax. In H. Wagner, H. Hikkino and N.R. Farnsworth (Eds.) Economic and Medicinal Plant Research, Vol.1. Orlando, Fla: Academic Press, 1985; p. 218-84. 110. Yuan CS, Attele AS, Wu JA i wsp. Modulation of American ginseng on brainstem GABAergic in the rat. J Ethnopharmacol 1998; 63: 215-22. 111. Kitts DD, Hu C. Efficacy and safety of ginseng. Public Health Nutr 2000; 3: 437-85. 112. Wagner H, Norr H, Winterhoff H. (1992), Drugs with adaptogenic effect for strengthening the powers of resistance. Zeitschrift für Phytotherapie 1992; 13: 42-54. 113. WHO monographs on selected medicinal plants. Radix Ginseng, vol.1, World Health Organisation, Geneva, 1999; p. 168-82. 114. Necerino E, Amato M, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 2000; 71 (1 Suppl): 51-5. 115. Benishin CG, Lee R, Wang LCH i wsp. Effect of ginsenoside Rb1 on central cholinergic metabolism. Pharmacology 1991; 42: 223-9. 116. Salin KN, McEwen BS, Cha M. Ginsenoside Rb1 regulates ChAT, NGF and trkA mRNA expression in the rat brain. Mol Brain Res 1997; 47: 177-82. 117. Fisher W, Chen KS, Gage FH i wsp. Progressive decline in spatial learning and integrity of forebrain cholinergic neurons in rats during aging. Neurobiol. Aging 1991; 13: 9-23. 118. Wu D, Hersh LB. Choline acetylotransferase: celebrating its fiftieth year. J Neurochem 1994; 62: 1653-63. 119. Jiang F, DeSilva S, Turnbull J. Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice. J Neurol Sci 2000; 180: 52-4. 120. Liu D, Li B, Lin Y i wsp. Voltage-dependent inhibition of brain Na+ channels by American ginseng. European J Pharmacol 2001; 413: 47-54. 121. Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Experimental Neurology 2002; 173: 224-34. 122. Taback B, Dodey DD, Marchiori J i wsp. (1996), Identification of an active component of ginseng that induces on estrogen – like effect in breast cancer cells. Breast Can Res Treat 1996; 41 (3): 264-8. 123. Cui L, Wu T, Liu XQ i wsp. Combination of ginsenosides with low dose estrogen showed synergetic effect on ovariectomy induced osteopenia in rats. Acta Pharm Sin 2002; 37: 501-5. 124. Chandler RF. Ginseng – aphrodisiac? Can Pharmacol J 1988; 121: 36-8. 125. Kitts DD, Wijewickreme AN, Hu C. Antioxidant properties of a North American ginseng extract. Mol Cell Biochem 2000; 203: 1-10. 126. Gillis CN. Panax ginseng pharmacology: A nitric oxide link? Biochem Pharm 1997; 54: 1-8. 127. Li J, Huang M, Teoh H i wsp. Panax quinquefolium saponins protects low density lipoproteins from oxidation. Life Sci 1999; 64 (1): 53-62. 128. Shao ZH, Xie JT, Hoek TLV i wsp. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochimica et Biophysica Acta 2004; 1670: 165-71. 129. Kang SY, Schini-Kerth VB, Kim ND. Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Science 1995; 56: 1577-86. 130. Yokozawa T. Hyperlipemia-improving effects of Rb2 in cholesterol-red rats. Chem Pharmacol Bull 1985; 33: 722-9. 131. Kim YS, Kim DS, Kim SI. Ginsenoside Rh2 and Rh3 induce differentiation of HL-60 cell into granulocytes: modulation of protein kinase C isoforms during differentiation by ginsenoside Rh2. Int J Biochem Cell Biol 1998; 30: 327-38. 132. Wang CN, Shiao YJ, Kuo YH i wsp. Inducible Nitric Oxide Synthase Inhibitors from Saposhnikovia divaricata and Panax quinquefolium. Planta Med 2000; 66, 644-7. 133. Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 2001; 16 (Suppl): S28-37. 134. Kitagawa I, Kobajashi M, Akedo H i wsp. Inhibition of tumor cell invasion and metastasis by ginsenoside Rg3. Ginseng Review 1995; 20: 41-6. 135. Kim HS, Lee JH, Goo YS i wsp. Effects of ginsenosides on Ca2+ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res Bull 1998; 46 (3): 245-51. 136. Popovich DG, Kitts D. Structure – function relationsship exists for ginsenosides in reducing cell proliferation and including apoptosis in the human leukemia (THP 1) cell line. Arch Biochem Biophys 2002; 406: 1-8. 137. Wakabayashi C, Murakami K, Hasegawa H i wsp. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun 1998; 246: 725-30. 138. Sato K, Mochizuki M, Saiki I i wsp. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside Rb2. Biol Pharmacol Bull 1994; 17: 635-9. 139. Lutomski J, Kędzia B. Ocena aktywności biologicznej roślin o działaniu adaptogennym. Post Fitoter 2000; 2: 31-5. 140. Xie JT, Mehendale SR, Wang A i wsp. American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacol Res 2004; 49: 113-7. 141. Voces J, Alvarez AI, Vila L i wsp. Effects of administration of the standardized Panax ginseng extract G115 on hepatic antioxidant function after exhaustive exercise. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1999; 123: 175-84. 142. PDR(r) for Herbal MedicinesTM, Medicinal Economics Company, Montvale, New Jersey, 2000; 346-51. 143. Internet_2. http://www.esculap.pl/main/print_news .html?news=6339144. Miller LG. Herbal medicinals: Selected clinical considerations focusing on known or potential drug – herb interactions. Arch Intern Med 1998; 158: 2200-11. 145. Fugh-Berman A. Herb-drug interactions. Lancet 2000; 355: 134-8.
otrzymano/received: 2008-07-02
zaakceptowano/accepted: 2008-07-05
Adres/address:
*Tadeusz Wolski
Katedra i Zakład Farmakognozji z Pracownią Roślin Leczniczych Uniwersytetu Medycznego w Lublinie
ul. Chodźki 1, 20-093 Lublin
tel. (0-81) 742-38-10, fax: (0-81) 742-38-09
e-mail: twolski@pharmacognosy.org.pl