Postępy
nasze czasopisma medyczne
New Medicine
Postępy Nauk Medycznych
Medycyna Rodzinna
Nowa Medycyna
Nowa Pediatria
Nowa Stomatologia
oferta Wydawnictwa Borgis
CzytelniaMedyczna.pl
Księgarnia Medyczna Borgis.pl
Księgarnia ogólna DoPoduszki.pl
Newsletter Biuletyn Telegram
Kosmetyki ziołowe
Postępy
Wydawca:
Wydawnictwo Medyczne Borgis

Organ
Sekcji Fitoterapii PTL
Sekcja Fitoterapii Polskiego Towarzystwa Lekarskiego

Znaczenie fizjologiczne oraz biodostępność betacjanin

© Borgis - Postepy Fitoterapii 1, s. 20-25
*Monika Szalaty
Znaczenie fizjologiczne oraz biodostępność betacjanin
PHYSIOLOGICAL ROLES AND BIOAVAILABILITY OF BETACYANINS
Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu
Kierownik Katedry: prof. dr hab. Włodzimierz Grajek
Summary
Betacyanins are red water-soluble nitrogen-containing plant pigments. Betacjanins known for a long time as safe colorants for food are phytochemicals, that were recently classified as compounds with antioxidant and radical scavenging activities. Red pigments are not so common as violet anthocyanins. Some families of Caryophyllales order of plants contain them, including the edible red beet and cactus pear.
Betanin, a principle betacyanin shows antiproliferative effects on human tumor cell lines. Recent studies showed that betanin enters tumor cells and alters mitochondrial membrane integrity, leading to cytochrome c leakage, activation of caspases and nuclear disintegration, all alterations typical of cells undergoing apoptosis. Moreover, betanin in micromolar concentration inhibit cell membrane lipid oxidation and lipoproteins LDL peroxidation.
According to recent reports, betanin bioavaiability is low as was obtained for other phytochemicals with antioxidant properties. The limited availability of dietary betacyanins significantly reduces their presence in plasma and the target cells. Betacyanins do not cause increases in plasma antioxidant capacity after beetroot or cactus pear consumption. However low concentration of antioxidant is probably sufficient to work intracellulary in redox reactions and signal trunsduction pathways.
Key words: betacyanins, betanin, antioxidant, activity, bioavailability
Piśmiennictwo
1. Clement JS, Mabry TJ. Pigmnet evolution in the caryophyllales: a systemic overwiew. Botanica Acta 1996; 109:360-7. 2. Gill M. Pigments of fungi ( Macromycetes). Nat Prod Rep 1994; 11:67-90. 3. Wyler H, Mabry TJ, Dreiding AS. Über die Konstitution des Randenfarbstoffes Betanin: Zur Struktur des Betanidins. Helv Chim Acta 1963; 46:1745-8. 4. Cai Y, Sun M, Corke H. Antioxidant activity of betalains from plants of the Amaranthaceae. J Agricult Food Chem 2003; 51:2288-94. 5. Strack D, Vogt T, Schliemann W. Recent advances in betalain research. Phytochem 2003; 62:247-69. 6. Piattelli M, Imperato F. Betacyanins of the family Cactaceae. Phytochem 1969; 8:1503-7. 7. Wybraniec S, et al. Betacyanins from wine cactus Hylocereus polyrhizus. Phytochem 2001; 58:1209-12. 8. Schliemann W, et al. Betalains of Celosia argentea. Phytochem 2001; 58:159-65. 9. Piattelli M, Minale L. Pigments of Centrospermae, II. Distribution of betacyanins. Phytochem 1964; 3:547-57. 10. Minale L, Piattelli M, De Stefano S. Pigments of Centrospermae, VII. Betacyanins from Gomphrena globsa L. Phytochem 1967; 6:703-9. 11. Heuer S, et al. Betacyanins from bracts of Bougainvillea glabra. Phytochem 1994; 37:761-7. 12. Piattelli M, Impellizzeri G. 2-Descarboxybetanidin, a minor betacyanin from Corpobrotus acinaciformis. Phytochem 1970; 9:2553-6. 13. Schliemann W, Kobayashi N, Strack D. The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiol 1999; 119:1217-32. 14. Kobayashi N, et al. Formation and occurence of dopamine-derived betacyanins. Phytochem 2001; 56:429-436. 15. Escribano J, et al. Characterisation of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem Anal 1998; 9:124-7. 16. Pavlov A, et al. Biosynthesis and radical scavenging activity of betalains during the cultivation of red beet ( Beta vulgaris) hairy root cultures. Z Naturforsch C 2002; 57:640-4. 17. Pedreno MA, Escribano J. Correlation between antiradical activity and stability of betanine from Beta vulgaris L. roots under different pH, temperature and light conditions. J Scien Food Agricult 2001; 81:627-31. 18. Wettasinghe M, et al. Phase II enzyme-inducing and antioxidant activities of beetroot ( Beta vulgaris L.) extracts from phenotypes of different pigmentation. J Agricult Food Chem 2002; 50:6704-7. 19. Butera D, et al. Antioxidant activities of Sicilian prickly pear ( Opuntia ficus-indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agricult Food Chem 2002; 50:6895-901. 20. Cao G, Sofic E, Prior RL. Antioxidant capacity of tea and common vegetables. J Agricult Food Chem 1996; 44:3426-31. 21. Halvorsen BL, et al. A systemic screening of total antioxidants in dietary plants. J Nutr 2002; 132:461-71. 22. Kähkönen MP, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999; 47:3954-62. 23. Ou B, et al. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assay: a comparative study. J Agric Food Chem 2002; 50:3122-8. 24. Vinson JA, et al. Phenol antioxidant quantity and quality in foods: vegetables. J Agric Food Chem 1998; 46:3630-4. 25. Wettasinghe M, et al. Screening for phase II enzyme-inducing and antioxidant activities of common vegetables. J Food Sci 2002; 67:2583-8. 26. Bednar CM, Kies C, Carlson M. Nitrate-nitrite levels in commercially processed and home processed beets and spinach. Plant Foods Human Nutrition 1991; 41:261-8. 27. Gangolli SD, et al. Nitrane, nitrite and N-nitroso compounds. Eur J Pharmacol 1994; 292:1-38. 28. Casas A, Barbera G. Mesoamerican domestication and diffusion. In: Nobel PS, editor. Cacti Biology and uses. Berkeley/Los Angeles/London: University of California Press; 2002. p.143-62. 29. Inglese P, Basile F, Schirra M. Cactus pear fruit production. In Nobel PS, editor. Cacti. Biology and uses. Berkeley/Los Angeles/London: University of California Press; 2002. p.163-83. 30. Nerd A, Tel-Zur N, Mizrahi Y. Fruit of vine and columnar cacti. In Nobel PS, editor. Cacti. Biology and uses. Berkeley/Los Angeles/London: University of California Press; 2002. p.185-97. 31. Wallace RS, Gibson AC. Evolution and systemics. In Nobel PS, editor. Cacti. Biology and uses. Berkeley/Los Angeles/London: University of California Press; 2002. p. 1-21. 32. Stintzing FC, Schieber A, Carle R. Evaluation of colour properties and chemical quality parameters of cactus juices. Eur Food Res Technol 2003; 216:303-11. 33. Wybraniec S, Mizrahi Y. Friut flesh betacyanin pigments in Hylocereus cacti. J Agric Food Chem 2002; 50:6086-9. 34. Schwartz SJ, et al. Inability of red beet betalain pigments to initiate or promote hepatocarcinogenesis. Food Chem Toxicol 1983; 21:531-5. 35. Von Elbe JH, Schwartz SJ. Absence of mutagenic activity and short-term toxicity study of beet pigments as food colorants. Archiv Toxicol 1981; 49:93-8. 36. Blazovics A, et al. Extreme consumption of Beta vulgaris var. rubra can cause metal ion accumulation in the liver. Acta Biol Hung 2007; 58: 281-6. 37. Mitchell SC. Food idiosyncrasies: beetroot and asparagus. Drug Metabolism and Disposition 2001; 29:539-43. 38. Reynoso RC, Giner TV, Gonzalez de Mejia E. Safety of a filtrate of fermented garambullo fruit: biotransformation and toxicity studies. Food ChemToxicol 1999; 37:825-30. 39. Dröge W. Free radicals in the physiology control of cell function. Phys Rev 2002; 82:47-95. 40. Fang Y-Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutr 2002; 18:872-9. 41. Kanner J, Harel S, Granit R. Betalains – a new class of dietary cationized antioxidants. J Agricult Food Chem 2001; 49:5178-85. 42. Allegra M, Tesoriere L, Livrea MA. Betanin inhibits the myeloperoxidase/nitrite-induced oxidation of human low-density lipoproteins. Free Rad Res 2007; 41:335-41. 43. Wettasinghe M, et al. Phase II enzyme-inducing and antioxidant activities of beetroot ( Beta vulgaris L.) extracts from phenotypes of different pigmentation. J Agricult Food Chem 2002; 50:6704-9. 44. Lee CH, et al. Betalains, phase II enzyme-inducing components from red beetroot ( Beta vulgaris L.) extracts. Nutr Can 2005; 53:91-103. 45. Kapadia GJ, et al. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Canc Lett 1996; 100:211-4. 46. Reddy MK, Alexander-Lindo RL, Nair MG. Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J Agric Food Chem 2005; 53:9268-73. 47. Sreekanth D, et al. Betanin a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia cell line-K562. Phytomed 2007; 14:739-46. 48. Frank T, et al. Urinary pharmacokinetics of betalains following consumption of red beet juice healthy humans. Pharmacol Res 2005; 52:290-7. 49. Tesoriere L, et al. Absorption, and distribution of dietary antioxidant betalain in LDLs: potential health effects of betalains in humans. Am J Clin Nutr 2004; 80:941-5. 50. Krantz C, Monier M, Wahlstrom B. Absorption, excretion, metabolism and cardiovascular effects of beetroot extract in the rat. Food Cosm Toxicol 1980; 18:363-6. 51. Felgines C, et al. Strawberry anthocyanins are recovered in urine as glucurono- and sulfoconjugates in humans. J Nutr 2003; 133:1296-301. 52. Frank T, et al. Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol 2003; 81:42335. 53. Kay CD, et al. Anthocyanin metabolites in human urine and serum. British J Nutr 2004; 91:933-42. 54. Manach C, et al. Quercetin is recovered in human plasma as conjugated derivatives with antioxidant properties. FEBS Letters 1998; 426:331-6. 55. Matsumoto H, et al. Orally administrated delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorber in rats and humans and appear in the blood as the intact forms. J Agricult Food Chem 2001; 49:1546-51. 56. Watts AR, et al. Beeturia and the biological fate of beetroot pigments. Pharmacogen 1993; 3:30211. 57. Cao G, et al. Anthocyanins are absorbed in glycated forms in elderly woman: a pharmacokinetic study. Am J Clin Nutr 2001; 73:920-6. 58. Gee JM, et al. Quercetin glucosides interact with the intestinal glucose transport pathway. Free Rad Biol Med 1998; 25:19-25. 59. Tesoriere L, Butera D, D´Arpa D. Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Rad Res 2003; 37:689-96. 60. Lotito SB, Frei B. The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids. Free Radical Biol Med 2004; 37:251- 8.

otrzymano/received: 2008-01-10
zaakceptowano/accepted: 2008-01-25

Adres/address:
*Monika Szalaty
Katedra Biotechnologii i Mikrobiologii Żywności
Uniwersytet Przyrodniczy w Poznaniu
ul. Wojska Polskiego 48, 60-627 Poznań
fax: (0-61) 846-60-03
tel.: (0-61) 846-60-22
e-mail: monikasz@au.poznan.pl

Pełna wersja artykułu Znaczenie fizjologiczne oraz biodostępność betacjanin dostępna w Czytelni Medycznej Borgis.
Copyright © Wydawnictwo Medyczne Borgis 2006-2013
Chcesz być na bieżąco? Polub nas na Facebooku: strona Wydawnictwa na Facebooku
do góry strony