Postępy
our medical journals
New Medicine
Postępy Nauk Medycznych
Medycyna Rodzinna
Nowa Medycyna
Nowa Pediatria
Nowa Stomatologia
our websites
CzytelniaMedyczna.pl
Księgarnia Medyczna Borgis.pl
Księgarnia ogólna DoPoduszki.pl
Newsletter Biuletyn Telegram
Kosmetyki ziołowe
Postępy
Publisher:
Borgis Medical Publisher

Patronage:
Section of Phytotherapy
of Polish Medical Association
Sekcja Fitoterapii Polskiego Towarzystwa Lekarskiego

Roślinne produkty naturalne jako blokery kanałów wapniowych układu sercowo-naczyniowego

© Borgis - Postepy Fitoterapii 2, p. 95-108
Aleksandra Chrobot, *Adam Matkowski
Roślinne produkty naturalne jako blokery kanałów wapniowych układu sercowo-naczyniowego
Plant natural drugs as calcium channel blockers in the cardiovascular system
Katedra Biologii i Botaniki Farmaceutycznej Akademii Medycznej we Wrocławiu
Kierownik Katedry: dr farm. Alicja Noculak-Palczewska
Summary
Calcium channel blockers are an important group of cardiovascular drugs. They inhibit the calcium influx into the smooth muscle cells and the cardiomyocytes, thus decreasing the contractibility. They act as negative chronotropic and inotropic agents. The physiological effects are: reduced blood pressure, improvement of coronary and peripheral circulation, as well as antiarrythmic activity.
In the recent years, numerous studies have confirmed that many ethnomedicinal plant natural products used in cardiovascular diseases, exhibit the ability to inhibit the calcium channels in vascular and heart muscle cells. Additionally, these compounds can modulate the intracellular calcium by inhibition of the release from ER. As the result, they cause the analogous pharmacological effects as the established synthetic Ca-blockers.
Besides, most plant derived drugs have multidirectional influence on human physiology, which extends their activity spectrum.
Calcium channel blocker of plant origin are from the chemical structure point of view very variable.
Following groups can be distinguished:
1. Alkaloids:
– aporphine - nantenine i liriodenine,
– bis-benzyl-isoquinoline - tetrandrine, fangquinoline, dauricine, daurisoline, nepherine i hernandesine,
– indole - hirsutine and Himalanthus lancifolius (Apocynaceae) alkaloids
– pyrazine - ligustrazine.
2. Triterpene saponins: ginsenosides.
3. Isoflavones: genistein, daidzein, equol i puerarin.
4. Coumarins and furanochromon derivatives: khelline, visnagin and visnadin.
5. Terpenoids: ginkgolides, marrubenol i S-petasine.
6. Miscellaneous: resveratrol, hinokiol, magnolol and butylidenephthalide.
Several studies indicate the calcium antagonist activity in other plants such as: Alstonia scholaris (Apocynaceae), Salvia miltiorrhiza (Lamiaceae) i Dalbergia odorifera (Leguminosae). However, the information of chemical structures responsible for that activity is still not available.
The calcium blockers of plant origin have great potential as cardiovascular drugs but only few are sufficiently documented clinically. Most of them have been investigated in vitro or in animal studies. In the near future, the importance and consumption of the plant complementary medicines would most likely increase, as soon as more consistent clinical data become available.
Key words: calcium blockers, cardiovascular system, plant natural products, alkaloids, terpenoids, isoflavonoids
Piśmiennictwo
1. Olszanecki R., Kocemba J.: Biologiczna rola wapnia-mechanizmy działania i geriatryczne walory leków blokujących kanały wapniowe. Gerontol. Pol. 2004, 12, 133. 2. Rola R.: Potencjałozależne kanały jonowe wapniowe. Med. Dydak. Wychow. 2004, 36, 29. 3. Kwan C.Y., Fi A.: Tetrandrine and related bis-benzylisoquinoline alkaloids from medicinal herbs: cardiovascular effects and mechanisms of action. Acta Pharmacol. Sin. 2002, 23, 1057. 4. Kocurek A., Piwowarska W.: Antagoniści jonów wapnia a skurcz tętnic wieńcowych i zapobieganie restenozie po angioplastyce. Przegl. Lek. 1997, 54, 37. 5. Wang G., Lemos J.R.: Tetrandrine: a new ligand to block voltage-dependent Ca2+ and Ca2+-activated K+ channels. Life Sci. 1995, 56, 295. 6. Sun J., Tan B.K.H., Huang S.H., i wsp.: Effects of natural products on ischemic heart diseases and cardiovascular system´. Acta. Pharmacol. Sin. 2002, 23,1142. 7. Kohlműnzer S.: Farmakognozja. PZWL Warszawa, 2000, 670. 8. Orallo F.: Pharmacological effects of (+)-nantenine, an alkaloid isolated from Platycapnos spicata, in several rat isolated tissues. Planta Med. 2003, 69, 135. 9. Chang G.J., Wu M.H., Wu Y.C. i wsp.: Electrophysiological mechanisms for antiarrhythmic efficacy and positive inotropy of liriodenine, a natural aporphine alkaloid from Fissistigma glaucescens. Br. J. Pharmacol. 1996, 118, 1571. 10. Yao W.X., Jiang M.X.: Effects of tetrandrine on cardiovascular electrophysiologic properties. Acta Pharmacol. Sin. 2002, 23, 1069. 11. Guan S., Lynch C.: Effect of tetrandrine on cellular electrophysiology and calcium uptake of myocardium in guinea pigs and dogs. Chin. Med. J. 2001, 114, 1046. 12. Qian J.Q.: Cardiovascular pharmacological effects of bisbenzylisoquinoline alkaloid derivates. Acta Pharmacol. Sin. 2002, 23, 1086. 13. Wong K.K.: Differential effect of tetrandrine on aortic relaxation and chronotropic activity in rat isolated aorta and atria. Planta Med. 1998, 64, 663. 14. King V.F., Garcia M.L., Himmel D. i wsp.: Interaction of tetrandrine with slowly inactivating calcium channel. J Biol. Chem. 1988, 263, 2238. 15. Wu S., Yu X.C., Shan J. i wsp.: Cardiac effects of the extract and active components of Radix Stephaniae tetrandrae. Electrically-induced intracellular calcium transient and protein release during the calcium paradox. Life Sci. 2001, 68, 2853. 16. Yu X.C., Wu S., Chen C.F. i wsp.: Antihypertensive and antiarrhythmic effects of an extract of Radix Stephaniae tetrandrae in the rat. J. Pharm. Pharmacol. 2004, 56, 115. 17. Low A.M., Berdik M., Sormaz L. i wsp.: Plant alkaloids, tetrandrine and hernandezine, inhibit calcium-depletion stimulated calcium entry in human and bovine endothelial cells. Life Sci. 1996, 58, 2327. 18. Masumiya H., Saitoh T., Tanaka Y. i wsp.: Effects of hirsutine and dihydrocorynantheine on the action potentials of sino-atrial node, atrium and ventricle. Life Sci. 1999, 65, 2333. 19. Yano S., Horiuchi H., Horie S. i wsp.: Ca2+ channel blocking effects of hirsutine, an indole alkaloid from Uncaria genus, in the isolated rat aorta. Planta Med. 1991, 57, 403. 20. Horie S., Yano S., Aimi N. i wsp.: Effects of hirsutine, an antihypertensive indole alkaloid from Uncaria rhynchophylla, on intracellular calcium in rat thoracic aorta. Life Sci. 1992, 50, 491. 21. Rattmann Y.D., Terluk M.R., Souza W.M. i wsp.: Effects of alkaloids of Himatanthus lancifolius (Muell. Arg.) Woodson, Apocynaceae, on smooth muscle responsiveness. J. Ethnopharmacol. 2005, 100, 268. 22. Pang PKT, Shan J.J., Chiu K.W.: Tetramethylpyrazine, a calcium antagonist, Planta Med. 1996, 62, 431. 23. Zou L.Y., Hao X.M., Zhang G.Q. i wsp.: Effect of tetramethyl pyrazine on L-type calcium channel in rat ventricular myocytes. Can. J. Physiol. Pharmacol. 2001, 79, 621. 24. Ko W.C., Chang C.Y., Sheu J.R. i wsp.: Effect of butylidenephthalide on calcium mobilization in isolated rat aorta. J. Pharm. Pharmacol. 1998, 50, 1365. 25. Attele A.S., Wu J.A., Yuan C.S.: Ginseng pharmacology, multiple constituents and multiple actions. Biochem. Pharmacol. 1999, 58, 1685. 26. Scott G.I., Colligan P.B., Ren B.H. i wsp.: Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br. J. Pharmacol. 2001, 134, 1159. 27. Jin Z.Q.: The action of ginsenoside Re on inotropy and chronotropy of isolated atria prepared from guinea pigs. Planta Med. 1996, 62, 314. 28. Bai C.X., Takahashi K., Masumiya H. i wsp.: Nitric oxide-dependent modulation of the delayed rectifier K+ current and the L-type Ca2+ current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pig cardiomyocytes. Br. J. Pharmacol. 2004, 142, 567. 29. Kim J.H., Lee J.H., Jeong S.M. i wsp.: Stereospecific effects of ginsenoside Rg3 epimers on swine coronary artery contractions. Biol. Pharm. Bull 2006, 29, 365. 30. Figtree G.A., Griffiths H., Lu Y.Q. i wsp.: Plant-derived estrogens relax coronary arteries in vitro by a calcium antagonistic mechanism. J. Am. Coll. Cardiol. 2000, 35,1977. 31. Murkies A.L., Wilcox G., Davis S.R.: Clinical review 92, phytoestrogens. J. Clin. Endocrin. Metabol. 1998, 83, 297. 32. Liew R., Williams J.K., Collins P. i wsp.: Soy-derived isoflavones exert opposing actions on guinea pig ventricular myocytes. J. Pharmacol. Experiment Therap. 2003, 304, 985. 33. Ji E., Yue H., Wu Y. i wsp.: Effects of phytoestrogen genistein on myocardial ischemia/reperfusion injury and apoptosis in rabbits. Acta Pharmacol. Sin. 2004, 56, 306. 34. Ji E.S., Yin J.X., Ma H.J. i wsp.: Effect of genistein on L-type calcium current in guinea pig ventricular myocytes. Acta Physiol. Sin. 2004, 56, 466. 35. Chiang C.E., Chen S.A., Chang M.S. i wsp.: Genistein directly inhibits L-type calcium currents but potentiates cAMP-dependent chloride currents in cardiomyocytes. Biochem. Biophys. Res. Comm. 1996, 223, 598. 36. Belevych A.E., Warrier S., Harvey R.D.: Genistein inhibits cardiac L-type Ca2+ channel activity by a tyrosine kinase-independent mechanism. Mol. Pharmacol. 2002, 62, 554. 37. Wang Y.G., Lipsius S.L.: Genistein elicits biphasic effects on L-type Ca2+ current in feline atrial myocytes. Am. J. Physiol. 1998, 275, H204. 38. Ogura T., Shuba L.M., McDonald T.F.: L-type Ca2+ current in guinea pig ventricular myocytes treated with modulators of tyrosine phosphorylation. Am. J. Physiol. 1999, 276, H1724. 39. Ma T., Fan Z.Z., He R.R.: Electrophysiological effects of phytoestrogen genistein on pacemaker cells in sinoatrial nodes of rabbits. Acta Pharmacol. Sin. 2002, 23, 367. 40. Ji E., Wang C., He R.R.: Effects of genistein on intracellular free-calcium concentration in guinea pig ventricular myocytes. Acta Pharmacol. Sin. 2004, 56, 204. 41. Yao R., An J.: Advances in myocardial protection. Internet J. Anesthesiol. 1999, 3, 2. 42. Qian Y., Li Z., Huang L. i wsp.: Blocking effect of puerarin on calcium channel in isolated guinea pig ventricular myocytes. Chin. Med. J. 1999, 112, 787. 43. Rauwald H.W., Brehm O., Odenthal K.P.: The involvement of a Ca2+ channel blocking mode of action in the pharmacology of Ammi visnaga fruits. Planta Med. 1994, 60, 101. 44. Ubeda A., Tejerina T., Tamargo J. i wsp.: Effects of khellin on contractile responses and 45Ca2+ movements in rat isolted aorta. J. Pharm. Pharmacol. 1991, 43, 46. 45. Ubeda A., Villar A.: Relaxant actions of khellin on vascular smooth muscle. J. Pharm. Pharmacol. 1989, 41, 236. 46. Duarte J., Torres A.I., Zarzuelo A.: Cardiovascular effects of visnagin on rats. Planta Med. 2000, 66, 35. 47. Duarte J., Perez-Vizcaino F., Torres A.I. i wsp.: Vasodilator effects of visnagin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 1995, 286, 115. 48. Duarte J., Vallejo I., Perez-Vizcaino F. i wsp.: Effects of visnadine on rat isolated vascular smooth muscle. Planta Med. 1997, 63, 233. 49. Bodalski T., Karłowicz-Bodalska K.: Ginkgo biloba L. – miłorząb dwuklapowy (chemizm i działanie biologiczne). Post. Fitoter. 2006, 7, 195. 50. Chen B., Cai J., Song L.S. i wsp.: Effects of Ginkgo biloba extract on cation currents in rat ventricular myocytes. Life Sci. 2005, 76, 1111. 51. Qi X.Y., Zhang Z., Xu Y.: Effects of ginkgolide B on action potential and calcium, potassium current in guinea pig ventricular myocytes. Acta Pharmacol. Sin. 2004, 25, 203. 52. Satoh H.: Suppresion of pacemaker activity by Ginkgo biloba extract and its main constituent, bilobalide in rat sino-atrial nodal cells. Life Sci. 2005,78, 67. 53. Sierpina V.S., Wollschlaeger B., Blumenthal M.: Ginkgo biloba. Am. Fam. Physician. 2003, 68, 923. 54. El-Bardai S., Wibo M., Hamaide M.C. i wsp.: Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker. Brit. J. Pharmacol. 2003, 140, 1211. 55. Wang G.J., Liao J.F., Hintz K.K. i wsp.: Calcium antagonizing activity of S-petasin, a hypotensive sesquiterpene from Petasites formosanus, on inotropic and chronotropic responses on isolated rat atria and cardiac myocytes. Naunyn-Schmiedeberg´s Arch. Pharmacol. 2004, 369, 322. 56. Zhang Y., Liu Y., Wang T. i wsp.: Resveratrol, a natural ingredient of grape skin: Antiarrhythmic efficacy and ionic mechanisms. Biochem. Biophys. Res. Comm. 2006, 340, 1192. 57. Tsai S.K., Huang S.S., Hong C.Y.: Myocardial protective effect of hinokiol: an active component in Magnolia officinalis, Planta Med. 1996, 62, 503. 58. Lu Y.C., Chen H.H., Ko C.H. i wsp.: The mechanism of hinokiol-induced and magnolol-induced inhibition on muscle contraction and Ca2+ mobilization in rat uterus. Naunyn Schmiedebergs Arch. Pharmacol. 2003, 368, 262. 59. Sugiyama A., Zhu B.M., Takahara A. i wsp.: Cardiac effects of Salvia miltiorrhiza / Dalbergia odorifera mixture, an intravenously applicable Chinese medicine widely used for patients with ischemic heart disease in China. Circ. J. 2002, 66, 182. 60. Fu Y.F., Hok K.J., Ho Y.J. i wsp.: Pharmacological evidence for calcium channel inhibition by Danshen ( Salvia miltiorrhiza) on rat isolated femoral artery. J. Cardiovasc. Pharmacol. 2006, 47, 139.

otrzymano/received: 2007-04-23
zaakceptowano/accepted: 2007-06-06

Adres/address:
*Adam Matkowski
Katedra Biologii i Botaniki Farmaceutycznej Akademia Medyczna we Wrocławiu
al. Jana Kochanowskiego 10, 51-601 Wrocław
tel/fax: (0-71) 348-29-42
e-mail: am9@biol.am.wroc.pl

The whole paper Plant natural drugs as calcium channel blockers in the cardiovascular system is also available at On-line Medical Library.
Copyright © Wydawnictwo Medyczne Borgis 2006-2011
do góry strony