current
issue
2/2013

Nowopoznana rola witaminy K w patogenezie chorób cywilizacyjnych

© Borgis - Medycyna Rodzinna 2, p. 48-60
Justyna Kosińska1, Katarzyna Billing-Marczak1, *Marcin Krotkiewski2
Nowopoznana rola witaminy K w patogenezie chorób cywilizacyjnych
Newly discovered role of vitamin k in the pathogenesis of diseases of civilization
1Dział Badań i Rozwoju Nowych Produktów, Biotech-Varsovia Sp. z o.o. – Sp. K. w Warszawie Dyrektor Działu: dr n. biol. Katarzyna Billing-Marczak 2The Sahlgrenska Academy at Göteborg University, Institute of Clinical Neuroscience, Göteborg, Sweden
Summary
Vitamins belonging to K family comprise of several compounds showing similar structure divided into K1 (Phylloquinone), K2 (Menaquinones) and K3 (Menadione). Apart from well known function of vitamin K as important coagulation factor, vitamin K shows a high spectrum of activities even in extrahepatic tissues.
Vitamin K takes part in carboxylation of proteins participating in mineralization of bones and calcification of blood vessels. There are osteocalcin produced by osteoblasts and MGP (Matrix Gla Protein) produced by epithelial cells in blood vessels and by chondrocytes in cartilage. Osteocalcin increases mineralization of bones, MGP prevents calcification of blood vessels. Moreover, vitamin K stimulates synthesis of collagen proteins. Vitamin K increases production of osteoblasts and apoptosis of osteoclasts changing the balance between these two types of cells towards formation of new bone tissue. Epidemiological studies showed negative correlation between the development of osteoporosis and cardiovascular diseases and the plasma concentration of vitamin K. Several studies indicate that vitamin K acts effectively in the prophylaxis and treatment of osteoporosis and arteriosclerosis.
Vitamin K inhibits polymerase γ activity in mitochondria and thereby induces the oxidative stress and apoptosis in cancer cells. It causes also the increase of expression of protooncogenes and TR3 protein as well as the inhibition of connexin CX43 depressing the proliferation and inducing massive apoptosis of tumor cells. In addition vitamin K plays an important role in the limitation of impairment of neuron functions and decline of cognitive brain functions after stroke. It modulates synthesis of sphingolipids and is proposed to be used in the prophylaxis of Alzeimer´s disease.
Key words: vitamin K, osteocalcin, MGP, osteoporosis, atherosclerosis
Pi¶miennictwo
1. Dam H, Schönheyder F: A deficiency disease in chicks resembling scurvy. Biochem J 1934; 28: 1355-9. 2. Zetterstrom R. H. C. P. Dam (1895-1976), E. A. Doisy (1893-1986): The discovery of antihaemorrhagic vitamin and its impact on neonatal health. Acta Paediatrica 2006; 95: 642-4. 3. McFarlane WD, Graham WR, Richardson F: The FAT-soluble vitamin requirements of the chick: the vitamin A and vitamin D content of fish meal and meat meal. Biochem J 1930; 25: 358-66. 4. Dam H: The antihaemorrhagic vitamin of the chick. Biochem J 1935; 29: 1273-85. 5. Almquist HJ: Purification of the antihemorrhagic vitamin. J Biol Chem 1936; 114: 241-5. 6. Almquist HJ: Purification of the antihemorrhagic vitamin by distillation. J Biol Chem 1936; 115: 589-91. 7. McKee RW, Binkley SB, MacCorquodale DW: The isolation of vitamins K1 and K2. J Am Chem Soc 1936; 61: 1295. 8. Almquist HJ, Stokstad ELR: Hemorrhagic chick disease of dietary origin. J Biol Chem 1935; 111: 105-13. 9. Lehmann J: Vitamin K as a prophylactic In 13.000 infants. Lancet 1944; 243: 493-4. 10. Vermeer C, Braam L: Role of K vitamins in the regulation of tissue calcification. J Bone Miner Metab 2001; 19: 201-6. 11. Cranenburg ECM, Schurgers LJ Vermeer C: Vitamin K: The coagulation vitamin that became omnipotent. Thromb Haemost 2007; 98: 120-5. 12. Lamson DW, Plaza SM: The anticancer effects of vitamin K. Alternative Medicine Review 2003; 8: 303-18. 13. Vermeer C et al.: Beyond Deficiency: Potential benefits of increased intakes of vitamin K for bone and vascular health. Eur J Nutr 2004; 43: 325-35. 14. Okano T et al.: Conversion of Phylloquinone (Vitamin K1) into Menaquinone-4 (Vitamin K2) in Mice. Two possible routes for menaquinone+4 accumulation in cerebra of mice. J Biol Chem 2008; 283: 11270-9. 15. Schurgers LJ et al.: Nutritional intake of vitamin K1 (Phylloquinone) and K2 (Menaquinone) in The Netherlands. Journal of Nutritional & Enviromental Medicine 1999; 9: 115-22. 16. Opracowanie: Benefits Beyond coagulation. Effects on osteoporosis and calcification of arteries. NAttoPharma. 17. Ronden JE, Thijssen HWH, Vermeer C: Tissue distribution of K-vitamers under different nutritional regimens in the rat. Biochim Biophys Acta Acta 1998; 1379: 16-22. 18. Knapen MH, Hamulyak K, Vermeer C: The effect of vitamin K supplementation on circulating osteocalcin (bone Gla protein) and urinary calcium excretion. Ann Int Med 1989; 111: 1001-5. 19. Schurgers LJ, Vermeer C: Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim Biophys Acta 2002; 1570: 27-32. 20. Vermeer C: Serum level of absorbed vitamin MK-7 and K1 in healthy people aged 55-60 years. Pilot Study 2; 2003. 21. Adams J, Pepping J: Vitamin K In the treatment and prevention of osteoporosis and arterial calcification. Am J Health-Syst Pharm 2005; 62: 1574-81. 22. Collins A, Cashman KD, Kiely M: Phylloquinone (vitamin K1) intakes and serum undercarboxylated osteocalcin levels In Irish postmenopausal women. Br J Nutr 2006; 95: 982-8. 23. Booth SL: Vitamin K status In the elderly. Curr Opin Clin Nutr Metab Care 2007; 10: 20-9. 24. Hodges SJ et al.: Detection and measurements of vitamins K1 and K2 in human cortical and trabecular bone. J Bone Miner Res 1993; 8: 1005-8. 25. Proudfoot D, Shanahan CM: Molecular mechanism mediating vascular calcification: Role of matrix Gla protein. Nephrology 2006; 11: 455-61. 26. Wallin R, Sane DC, Hutson SM: Vitamin K 2,3-epoxide reductase and the vitamin K-dependent g-carboxylation system. Thromb Res 2003; 108: 221-6. 27. Schurgers LJ et al.: Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood 2007; 109: 2823-31. 28. Suttie JW: Vitamin K-dependent carboxylase. Ann Rev 1985; 54: 459-77. 29. Cain D, Hutson SM, Wallin R: Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J Biol Chem 1997;272: 29068-75. 30. Chu PH et al.: Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2. PNAS 2006; 103: 19308-13. 31. Cranenburg ECM et al.: The circulating inactive form of Matrix Gla Protein (ucMGP) as a biomarker for cardiovascular Calcification. J Vasc Res 2008; 45: 427-36. 32. Shearer MJ: Role of vitamin K and Gla proteins in the pathophysiology of osteoporosis and vascular calcification. Curr Opin Clin Nutr & Metab Care 2000; 3: 433-8. 33. Erkkila AT, Booth SL: Vitamin K intake and atherosclerosis. Curr Opin Lipidol 2008; 19: 39-42. 34. Karsenty G: Genetics of Skeletogenesis. Dev Genet 1998; 22: 301-13. 35. Luo G et al.: Spontaneous calcification of arteries and cartilage In mice lacking matrix Gla protein. Nature 1997; 386: 78-81. 36. Horie-Inoue K, Inoue S: Steroid and xenobiotic receptor mediates a novel vitamin K2 signaling pathway in osteoblastic cells. J Bone Miner Metab 2008; 26: 9-12. 37. Saxena SP, Israels ED, Israels LG: Novel vitamin K dependent pathways regulating cell survival. Apoptosis 2001; 6: 57-68. 38. Szulc P et al.: Serum undercarboxylated osteocalcin is a marker of the risk of hip frapture: a three year follow-up study. Bone 1996; 18: 487-8. 39. Braam LA et al.: Assay for human Matrix Gla Protein in serum: potential application in the cardiovascular field. Arterioscler Thromb Vasc Biol 2000; 20: 1257-61. 40. Price PA, Faus SA, Williamson MK: Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol 1998; 18: 1400-7. 41. Spronk HM et al.: Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J Vasc Res 2003; 40: 531-7. 42. Stafford DW, Roberts HR, Vermeer C: Vitamin K supplementation during oral anticoagulation: cautions. Blood 2007; 109: 3607. 43. Lietman PS, Pettifor JM, Benson R: Congenital malformations associated with the administration of oral anticoagulants during pregnancy. J Pediatr 1975; 86: 459-62. 44. Pastoureau P et al.: Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs. J Bone Miner Res 1993; 8: 1417-26. 45. Gage BF et al.: Risk of osteoporotic fracture in elderly patients taking warfarin: results from the National Registry of Atrial Fibrillation 2. Arch Intern Med 2006; 166: 241-6. 46. Tabb MM, Sun A, Zhou C: Vitamin K2 Regulation of Bone Homeostasis Is Mediated by the Steroid and Xenobiotic Receptor SXR. J Biol Chem 2003; 278: 43919-27. 47. Koshihara Y et al.: Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture. J Endocrinol 2003; 3: 339-48. 48. Ducy P et al.: Increased bone formation In osteocalcin-deficient mice. Nature 1996; 382: 448-52. 49. Booth SL et al.: Effects of vitamin K supplementation on bone loss In elderly men and women. J Clin Endocrinol Metab 2008; 93: 1217-23. 50. Vergnaud P et al.: Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab 1997; 82: 719-24. 51. Szulc P et al.: Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 1993; 4: 1769-74. 52. Szulc P et al.: Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res 1994; 9: 1591-5. 53. Feskanish D et al.: Vitamin K intake and hip fracture In women: a prospective study. Am J Clin Nutr 1999; 1: 74-9. 54. Coutu D et al.: Periostin: a member of a novel family of vitamin K-dependent proteins is expressed by mesenchymal stromal cells. J Biol Chem 2008; 1-21. 55. Igarashi M et al.: Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 gene. Mol Cell Biol 2007; 27: 7947-54. 56. Ichikawa T et al.: Steroid and Xenobiotic Receptor SXR Mediates Vitamin K2-activated Transcription of Extracellular Matrix-related Genes and Collagen Accumulation in Osteoblastic Cells. J Biol Chem 2006; 281: 16927-34. 57. Ohta K et al.: Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin. Dev Cell 2004; 7: 347-58. 58. Wiberg C et al.: Complexes of Matrilin-1 and Biglycan or Decorin Connect Collagen VI Microfibrils to Both Collagen II and Aggrecan. J Biol Chem 2003; 278: 37698-704. 59. Wagenera R et al.: The matrilins - adaptor proteins in the extracellular matrix. FEBS 2005; 579: 3323-9. 60. Shea MK et al.: Vitamin K and vitamin D status: association with inflammatory markers in the Framingham Offspring Study. Am J Epidemiol 2008; 167: 313-20. 61. El-Abbadi M, Giachelli CM: Mechanisms of vascular calcification. Advances in Chronic Kidney Disease 2007; 14: 54-66. 62. Schurgers LJ et al.: Oral anticoagulant treatment: friend and foe in cardiovascular disease? Blood 2004; 104: 3231-2. 63. Koos R et al.: Relation of oral anticoagulation to cardiac valvular and coronary calcium assessed by multislice spiral computed tomography. Am J Cardol 2005; 96: 747-9. 64. Hall JG, Pauli RM, Wilson KM: Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med 1980; 68: 122-40. 65. Howe AM et al.: Severe cervical dysplasia and nasal cartilage calcification following prenatal warfarin exposure. Am J Med Genet 1997; 71: 391-6. 66. Braam LA, Hoeks AP, Brouns F: Beneficial effects of vitamins D and K on the elastic properties of the vessel wall in postmenopausal women: a follow-up study. Thromb Haemost 2004; 91: 373-80. 67. Geleijnse JM, Vermeer C, Grobbee DE: Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J Nutr 2004; 134: 3100-5. 68. Allison AC: The possible role of vitamin K deficiency in the pathogenesis of Alzheimer´s disease and in augmenting brain damage associated with cardiovascular disease. Med Hypotheses 2001; 57: 151-5. 69. Kohlmeier M, Salomon A, Saupe J, Shearer MJ: Transport of vitamin K to bone In humans. J Nutr 1996; 126 (suppl): 1192S-6S . 70. Cauley JA et al.: Apolipoprotein E Polymorphism: A New Genetic Marker of Hip Fracture Risk-The Study of Osteoporotic Fractures. J Bone Miner Res 1999; 14: 1175-81. 71. Thijssen HHW, Drittij-Reijnders MJ: Vitamin K distribution in rat tissue: dietary phylloquinone is a source of tissue menaquinone-4. Br J Nutr 1994; 72: 415-25. 72. Lev M, Milford AF: Effect of vitamin K depletion and restoration on sphingolipid metabolism in Bacteroides melaninogenicus. J Lipid Res 1972; 13: 364-70. 73. Sundaram KS, Lev Meir: Warfarin administration reduces synthesis of sulfatides and other sphingolipids in mouse brain. J Lipid Res 1998; 29: 1475-9. 74. Sundaram KS et al.: Vitamin K status influences brain sulfatide metabolism in young mice and rats. J Nutr 1996; 126: 2746-51. 75. Mitchell JS, Simon-Reuss I: Combination of some effects of x-radiation and a synthetic vitamin K substitute. Nature 1947; 160: 98-9. 76. Sasaki R et al.: DNA polymerase g inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells. Cancer Sci 2008; 99: 1040-8. 77. Nimptsch K, Rohrmann S, Linseisen J: Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am J Clin Nutr 2008; 87: 985-92. 78. Noto V et al.: Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro.Synergism of combined viatmin C and K3 action. Cancer 1989; 63: 901-6. 79. Sibayama-Imazu T et al.: Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increased in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J Cancer Res Clin Oncol 2008; 134: 803-12. 80. Wu Q et al.: Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J 1997; 16: 1656-69. 81. Habu D, Shiomi S, Tamori A: Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver. JAMA 2004; 292: 358-61. 82. Kaneda M et al.: Vitamin K2 suppress malignancy of HuH7 hepatoma cells via inhibition of connexin 43. Cancaer Lett 2008; 263: 53-60. 83. Cummings SR, Melton LJ: Epidemiology and outcomes of osteoporotic fractures. Lancet 2002; 359: 1761-7. 84. Women Health Intitative study - USA 2006: N Engl J Med, Feb. 16. 85. Kaneki M et al.: Japanese fermented soybean food as the major determinant of large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 2001; 17: 315-21.

otrzymano/received: 2008-05-26
zaakceptowano/accepted: 2008-06-12

Adres/address:
*Marcin Krotkiewski Biotech-Varsovia Sp. z o.o. – Spółka komandytowa ul. Domaniewska 47, 02-672 Warszawa e-mail: m.krotkiewski@nestenborg.net

The whole paper Newly discovered role of vitamin k in the pathogenesis of diseases of civilization is also available at On-line Medical Library.
Copyright © Borgis Medical Publisher Ltd. 2007-2011